Kamis, 27 Juni 2013

BIOINFORMATIKA

PENGERTIAN “BIOINFORMATIKA”
 Secara umum, Bioinformatika dapat digambarkan sebagai segala bentuk penggunaan komputer dalam menangani informasi-informasi biologi.

 Menurut kebanyakan orang, Bioinformatika adalah satu sinonim dari komputasi biologi molekul (penggunaan komputer dalam menandai karakterisasi dari komponen-komponen molekul dari makhluk hidup).

 Menurut Fredj Tekaia dari Institut Pasteur [TEKAIA2004], Bioinformatika adalah metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya.

 Dari ketiga pengertian diatas maka dapat disimpulkan bahwa Bioinformatika ialah ilmu yang mempelajari penerapan teknik komputasi untuk mengelola dan menganalisis informasi hayati. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologi, terutama yang terkait dengan penggunaan sekuens DNA dan asam amino.

SEJARAH “BIOINFORMATIKA”
Bioinformatika pertamakali dikemukakan pada pertengahan 1980an untuk mengacu kepada penerapan ilmu komputer dalam bidang biologi. Meskipun demikian, penerapan bidang-bidang dalam bioinformatika seperti pembuatan pangkalan data dan pengembangan algoritma untuk analisis sekuens biologi telah dilakukan sejak tahun 1960an. Kemajuan teknik biologi molekuler dalam mengungkap sekuens biologi protein (sejak awal 1950an) dan asam nukleat (sejak 1960an) mengawali perkembangan pangkalan data dan teknik analisis sekuens biologi. Pangkalan data sekuens protein mulai dikembangkan pada tahun 1960an di Amerika Serikat, sementara pangkalan data sekuens DNA dikembangkan pada akhir 1970an di Amerika Serikat dan Jerman pada Laboratorium Biologi Molekuler Eropa (European Molecular Biology Laboratory).




Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang dapat diungkapkan pada 1980an dan 1990an. Hal ini menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, yang meningkatkan kebutuhan akan pengelolaan dan analisis sekuens. Hal ini jugalah yang menyebabkan lahirnya istilah bioinformatika.

Bioinformatika ini terus dan terus saja berkembang dengan adanya jaringan internet. Pangkalan data bioinformatika yang terhubungkan melalui internet memudahkan ilmuwan untuk mengumpulkan hasil sekuensing ke dalam pangkalan data tersebut serta memperoleh sekuens biologi sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan dalam mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

CONTOH-CONTOH PENGGUNAAN “BIOINFORMATIKA”
1.       Bioinformatika dalam bidang klinis
Bioinformatika dalam bidang klinis sring juga disebut sebagai informatika klinis (clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR telah diaplikasikan pada berbagai macam penyakit seperti data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dll.

2.       Bioinformatika untuk identifikasi Agent penyakit baru
Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi agent penyakit yang belum dikenal penyebabnya. Misalnya saja seperti SARS (Severe Acute Respiratory Syndrome) yang dulu pernah berkembang.

3.       Bioinformatika untuk diagnose penyakit baru
Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk pemberian obat dan perawatan yang tepat bagi pasien.
Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR).

4.       Bioinformatika untuk penemuan obat

Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa yang dapat menekan perkembangbiakan suatu agent penyebab penyakit. Karena perkembangbiakan agent tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu agent.

CABANG-CABANG YANG TERKAIT DENGAN “BIOINFORMATIKA”
1.       Biophysics
Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur yang membutuhkan penggunaan TI.

2.       Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis dari pada biomedis dalam molekul dan sel.

3.       Medical Informatics
Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.” Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri.
4.       Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini.

5.       Genomics
Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih.

6.       Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu “menyelesaikan” masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu.
 Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

7.       Proteomics
Adalah ilmu yang mempelajari proteome.

8.       Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).

9.       Pharmacogenetics
Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomic. Contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan.


Tidak ada komentar:

Posting Komentar